graph LR
A["๐ด Legacy Systems"] --> B["๐ง AI-Powered<br>Code Modernization"]
B --> C["โจ Modern Systems"]
subgraph "โ Legacy Challenges"
D["๐ธ Technical Debt"]
E["๐ Outdated Languages"]
F["๐ฐ High Maintenance Cost"]
G["๐ Limited Scalability"]
end
subgraph "โ
Modernization Benefits"
H["โ๏ธ Cloud-Ready"]
I["๐ Enhanced Security"]
J["๐ Business Agility"]
K["๐ฎ Future-Proof Architecture"]
end
A --- D & E & F & G
C --- H & I & J & K
style A fill:#ff6b6b,color:#fff,stroke:#333,stroke-width:2px
style B fill:#4d96ff,color:#fff,stroke:#333,stroke-width:2px
style C fill:#6bcb77,color:#fff,stroke:#333,stroke-width:2px
style D fill:#ffd166,color:#333,stroke:#333,stroke-width:1px
style E fill:#ffd166,color:#333,stroke:#333,stroke-width:1px
style F fill:#ffd166,color:#333,stroke:#333,stroke-width:1px
style G fill:#ffd166,color:#333,stroke:#333,stroke-width:1px
style H fill:#06d6a0,color:#333,stroke:#333,stroke-width:1px
style I fill:#06d6a0,color:#333,stroke:#333,stroke-width:1px
style J fill:#06d6a0,color:#333,stroke:#333,stroke-width:1px
style K fill:#06d6a0,color:#333,stroke:#333,stroke-width:1px
In todayโs rapidly evolving digital landscape, organizations find themselves trapped by legacy systems that were once cutting-edge but now represent significant technical debt. Traditional code migration approaches have proven to be:
This technological stagnation creates a critical bottleneck for digital transformation initiatives, hindering innovation and compromising market competitiveness.
flowchart TD
A["๐จโ๐ป Legacy Codebase"] -->|"โฑ๏ธ Traditional Migration"| B["โ 5+ Years Timeline"]
A -->|"๐ง Manual Process"| C["๐งฉ High Complexity"]
A -->|"๐ผ Resource Intensive"| D["๐ฐ Budget Overruns"]
A -->|"โ ๏ธ Error Prone"| E["๐ Quality Issues"]
B & C & D & E --> F["๐ง Digital Transformation<br>Bottleneck"]
F --> G["โฌ๏ธ Competitive<br>Disadvantage"]
style A fill:#f8a5c2,color:#333,stroke:#333,stroke-width:2px
style B fill:#f7d794,color:#333,stroke:#333,stroke-width:1px
style C fill:#f7d794,color:#333,stroke:#333,stroke-width:1px
style D fill:#f7d794,color:#333,stroke:#333,stroke-width:1px
style E fill:#f7d794,color:#333,stroke:#333,stroke-width:1px
style F fill:#778beb,color:#fff,stroke:#333,stroke-width:2px
style G fill:#ea8685,color:#fff,stroke:#333,stroke-width:2px
classDef path fill:none,stroke:#333,stroke-width:1px;
linkStyle default stroke:#999,stroke-width:2px,fill:none;
We introduce a groundbreaking approach to code modernization through an orchestrated network of specialized AI agents, each designed to handle specific aspects of the migration process with unprecedented efficiency and accuracy.
Rather than approaching migration as a brute-force manual effort, our solution leverages a collaborative AI ecosystem that mimics the structure of an expert human team while operating at machine scale and speed. This fundamentally transforms the migration paradigm from a linear, resource-intensive process to an intelligent, parallel operation.
graph TD
A["๐จโ๐ป Legacy Codebase"] --> B["๐ค AI Agent Ecosystem"]
B --> C["โจ Modern Codebase"]
subgraph "๐ง AI Agent Ecosystem"
D["๐ Assessment<br>Agents"] ---|"Insights"| E["๐ Transformation<br>Agents"]
E ---|"Output"| F["โ
Validation<br>Agents"]
end
D -..->|"Analyzes"| D1["๐๏ธ CodeLens"]
D -..->|"Extracts"| D2["๐บ๏ธ LogicMapper"]
D -..->|"Organizes"| D3["๐งต DataFabric"]
E -..->|"Restructures"| E1["๐๏ธ CodeStructor"]
E -..->|"Converts"| E2["๐ TransformEngine"]
E -..->|"Optimizes"| E3["โก EnhanceLogic"]
F -..->|"Generates"| F1["๐งช TestBed"]
F -..->|"Executes"| F2["โ๏ธ DualRunner"]
F -..->|"Resolves"| F3["๐ง FixPoint"]
style A fill:#f8a5c2,color:#333,stroke:#333,stroke-width:2px
style B fill:#a3d8f4,color:#333,stroke:#333,stroke-width:2px
style C fill:#b5ead7,color:#333,stroke:#333,stroke-width:2px
style D fill:#ffd3b6,color:#333,stroke:#333,stroke-width:1px
style E fill:#c7ceea,color:#333,stroke:#333,stroke-width:1px
style F fill:#a8e6cf,color:#333,stroke:#333,stroke-width:1px
style D1 fill:#ffd3b6,color:#333,stroke:#333,stroke-width:1px,stroke-dasharray: 3 3
style D2 fill:#ffd3b6,color:#333,stroke:#333,stroke-width:1px,stroke-dasharray: 3 3
style D3 fill:#ffd3b6,color:#333,stroke:#333,stroke-width:1px,stroke-dasharray: 3 3
style E1 fill:#c7ceea,color:#333,stroke:#333,stroke-width:1px,stroke-dasharray: 3 3
style E2 fill:#c7ceea,color:#333,stroke:#333,stroke-width:1px,stroke-dasharray: 3 3
style E3 fill:#c7ceea,color:#333,stroke:#333,stroke-width:1px,stroke-dasharray: 3 3
style F1 fill:#a8e6cf,color:#333,stroke:#333,stroke-width:1px,stroke-dasharray: 3 3
style F2 fill:#a8e6cf,color:#333,stroke:#333,stroke-width:1px,stroke-dasharray: 3 3
style F3 fill:#a8e6cf,color:#333,stroke:#333,stroke-width:1px,stroke-dasharray: 3 3
linkStyle default stroke:#999,stroke-width:1px
| Agent | Function | Value Proposition |
|---|---|---|
| CodeLens | Evaluates codebase complexity, dependencies, and structure | Enables accurate effort estimation, risk identification, and strategic migration planning |
| LogicMapper | Documents business logic embedded within legacy code | Ensures critical business processes are preserved during translation, maintaining operational continuity |
| DataFabric | Maps data structures, relationships, and code lineage | Addresses data integrity concerns, often a primary failure point in migrations |
stateDiagram-v2
[*] --> Assessment: Begin
state Assessment {
[*] --> Initiate
Initiate --> Analysis
}
Assessment --> CodeLens: "๐๏ธ Deep Inspection"
state CodeLens {
[*] --> Scan
Scan --> Analyze
Analyze --> Report
}
CodeLens --> Complexity: "๐งฉ Identify"
CodeLens --> Dependencies: "๐ Map"
CodeLens --> RiskAreas: "โ ๏ธ Highlight"
Assessment --> LogicMapper: "๐ง Business Logic"
state LogicMapper {
[*] --> Extract
Extract --> Interpret
Interpret --> Document
}
LogicMapper --> BusinessRules: "๐ Document"
LogicMapper --> ProcessFlows: "๐ Diagram"
LogicMapper --> EdgeCases: "๐งช Catalog"
Assessment --> DataFabric: "๐พ Data Analysis"
state DataFabric {
[*] --> Discover
Discover --> Model
Model --> Connect
}
DataFabric --> Schema: "๐๏ธ Map"
DataFabric --> Relationships: "๐ Connect"
DataFabric --> LineageTracing: "๐ Track"
state Understanding {
[*] --> Integrate
Integrate --> Synthesize
Synthesize --> Complete
}
Complexity --> Understanding: "Input"
Dependencies --> Understanding: "Input"
RiskAreas --> Understanding: "Input"
BusinessRules --> Understanding: "Input"
ProcessFlows --> Understanding: "Input"
EdgeCases --> Understanding: "Input"
Schema --> Understanding: "Input"
Relationships --> Understanding: "Input"
LineageTracing --> Understanding: "Input"
Understanding --> [*]: "Complete Assessment"
note right of Assessment
Human experts review
initial findings
end note
note right of Understanding
Comprehensive system
knowledge acquired
end note
| Agent | Function | Value Proposition |
|---|---|---|
| CodeStructor | Restructures complex code into logical, manageable segments | Improves maintainability before migration begins, reducing technical debt |
| TransformEngine | Translates source code to target language with contextual awareness | Performs the core technical transformation with precision |
| EnhanceLogic | Refines transformed code to leverage target platform capabilities | Goes beyond translation to create idiomatic, high-performance code in the new environment |
stateDiagram-v2
[*] --> Transformation: "๐ Begin Transformation"
state Transformation {
[*] --> Planning
Planning --> Execution
Execution --> Review
}
Transformation --> CodeStructor: "๐๏ธ Restructuring"
state CodeStructor {
[*] --> Analyze
Analyze --> Refactor
Refactor --> Validate
}
CodeStructor --> Modularization: "๐ฆ Break Down"
CodeStructor --> Simplification: "โ๏ธ Clarify"
CodeStructor --> Architecture: "๐๏ธ Improve"
Transformation --> TransformEngine: "๐ Translation"
state TransformEngine {
[*] --> Parse
Parse --> Convert
Convert --> Refine
}
TransformEngine --> LanguageTranslation: "๐ฌ Convert"
TransformEngine --> APIMapping: "๐ Align"
TransformEngine --> FunctionalEquivalence: "โ๏ธ Maintain"
Transformation --> EnhanceLogic: "โก Enhancement"
state EnhanceLogic {
[*] --> Assess
Assess --> Optimize
Optimize --> Finalize
}
EnhanceLogic --> PerformanceOptimization: "๐ Accelerate"
EnhanceLogic --> ModernPatterns: "โจ Implement"
EnhanceLogic --> TargetCapabilities: "๐ฏ Leverage"
state CodeTransformed {
[*] --> Integrated
Integrated --> Verified
Verified --> Ready
}
Modularization --> CodeTransformed: "Result"
Simplification --> CodeTransformed: "Result"
Architecture --> CodeTransformed: "Result"
LanguageTranslation --> CodeTransformed: "Result"
APIMapping --> CodeTransformed: "Result"
FunctionalEquivalence --> CodeTransformed: "Result"
PerformanceOptimization --> CodeTransformed: "Result"
ModernPatterns --> CodeTransformed: "Result"
TargetCapabilities --> CodeTransformed: "Result"
CodeTransformed --> [*]: "โ
Transformation Complete"
note right of Transformation
Human experts guide priority
and transformation strategy
end note
note right of CodeTransformed
Human developers review
transformation results
end note
| Agent | Function | Value Proposition |
|---|---|---|
| TestBed | Creates realistic test datasets that preserve relationships | Enables comprehensive testing without exposing sensitive production data |
| DualRunner | Runs parallel tests in source and target environments | Identifies behavioral discrepancies and ensures functional equivalence |
| FixPoint | Resolves migration errors and flags complex issues for human review | Optimizes the use of scarce human expertise, focusing developer time on high-value problems |
stateDiagram-v2
[*] --> Validation: "๐งช Begin Validation"
state Validation {
[*] --> Setup
Setup --> Execute
Execute --> Analyze
}
Validation --> TestBed: "๐งช Data Preparation"
state TestBed {
[*] --> Design
Design --> Generate
Generate --> Verify
}
TestBed --> SyntheticDatasets: "๐ Create"
TestBed --> EdgeCaseScenarios: "๐ง Define"
TestBed --> DataRelationships: "๐ Preserve"
Validation --> DualRunner: "โ๏ธ Comparison Testing"
state DualRunner {
[*] --> Configure
Configure --> Execute
Execute --> Compare
}
DualRunner --> ParallelExecution: "โฏ๏ธ Run"
DualRunner --> OutputComparison: "๐ Analyze"
DualRunner --> PerformanceMetrics: "๐ Measure"
Validation --> FixPoint: "๐ง Refinement"
state FixPoint {
[*] --> Detect
Detect --> Classify
Classify --> Resolve
}
FixPoint --> AutomaticFixes: "๐ค Apply"
FixPoint --> HumanReviewFlags: "๐จโ๐ป Prioritize"
FixPoint --> QualityChecks: "โ
Verify"
state ValidationComplete {
[*] --> ResultsAnalyzed
ResultsAnalyzed --> IssuesResolved
IssuesResolved --> ReadyForDeployment
}
SyntheticDatasets --> ValidationComplete: "Input"
EdgeCaseScenarios --> ValidationComplete: "Input"
DataRelationships --> ValidationComplete: "Input"
ParallelExecution --> ValidationComplete: "Input"
OutputComparison --> ValidationComplete: "Input"
PerformanceMetrics --> ValidationComplete: "Input"
AutomaticFixes --> ValidationComplete: "Input"
HumanReviewFlags --> ValidationComplete: "Input"
QualityChecks --> ValidationComplete: "Input"
ValidationComplete --> [*]: "๐ Validation Complete"
note right of Validation
QA experts set
validation criteria
end note
note right of FixPoint
Human-AI collaboration
for complex issues
end note
note right of ValidationComplete
Business stakeholders
sign off on results
end note
Our AI-powered modernization approach delivers transformative benefits across multiple dimensions:
graph LR
A["๐ง AI-Powered<br>Code Modernization"] --> B["โก Accelerated<br>Delivery"]
A --> C["โจ Enhanced<br>Quality"]
A --> D["๐ฐ Cost<br>Efficiency"]
A --> E["๐ก๏ธ Risk<br>Mitigation"]
A --> F["๐ Governance &<br>Compliance"]
B --> B1["โฑ๏ธ 70% Faster Timelines"]
C --> C1["๐ Fewer Defects"]
D --> D1["๐ Lower Resource Requirements"]
E --> E1["๐งฉ Structured Risk Management"]
F --> F1["โ
Auditable Process"]
style A fill:#4d96ff,color:#fff,stroke:#333,stroke-width:2px,rx:10px,ry:10px
style B fill:#ff9a8b,color:#333,stroke:#333,stroke-width:1px,rx:5px,ry:5px
style C fill:#ffd3b6,color:#333,stroke:#333,stroke-width:1px,rx:5px,ry:5px
style D fill:#a8e6cf,color:#333,stroke:#333,stroke-width:1px,rx:5px,ry:5px
style E fill:#d3b6ff,color:#333,stroke:#333,stroke-width:1px,rx:5px,ry:5px
style F fill:#ffb6b9,color:#333,stroke:#333,stroke-width:1px,rx:5px,ry:5px
style B1 fill:#ff9a8b,color:#333,stroke:#333,stroke-width:1px,stroke-dasharray: 3 3,rx:5px,ry:5px
style C1 fill:#ffd3b6,color:#333,stroke:#333,stroke-width:1px,stroke-dasharray: 3 3,rx:5px,ry:5px
style D1 fill:#a8e6cf,color:#333,stroke:#333,stroke-width:1px,stroke-dasharray: 3 3,rx:5px,ry:5px
style E1 fill:#d3b6ff,color:#333,stroke:#333,stroke-width:1px,stroke-dasharray: 3 3,rx:5px,ry:5px
style F1 fill:#ffb6b9,color:#333,stroke:#333,stroke-width:1px,stroke-dasharray: 3 3,rx:5px,ry:5px
linkStyle default stroke:#999,stroke-width:2px,fill:none,stroke-dasharray: 5 5;
classDef businessImpact text-align:center,font-weight:bold;
class A,B,C,D,E,F businessImpact;
%% Adding human element notes
subgraph "๐ฅ Business Stakeholder Benefits"
B & C & D & E & F
end
Traditional modernization projects often face a painful trade-off between speed, quality, and cost. Our AI-driven approach breaks this constraint by delivering improvements across all dimensions simultaneously:
graph TD
A["๐ง AI-Driven<br>Code Modernization"] --> B["โก Faster"]
A --> C["โจ Better"]
A --> D["๐ฐ Cheaper"]
B --> B1["โฑ๏ธ Parallel Processing"]
B --> B2["๐ค Automation at Scale"]
C --> C1["๐จโ๐ป Specialized Expertise"]
C --> C2["๐ Consistent Quality"]
D --> D1["๐ฅ Reduced Human Effort"]
D --> D2["๐ Lower Operational Costs"]
style A fill:#6c5ce7,color:#fff,stroke:#333,stroke-width:2px,rx:10px,ry:10px
style B fill:#74b9ff,color:#333,stroke:#333,stroke-width:1px,rx:8px,ry:8px
style C fill:#55efc4,color:#333,stroke:#333,stroke-width:1px,rx:8px,ry:8px
style D fill:#ffeaa7,color:#333,stroke:#333,stroke-width:1px,rx:8px,ry:8px
style B1 fill:#74b9ff,color:#333,stroke:#333,stroke-width:1px,rx:5px,ry:5px,stroke-dasharray: 3 3
style B2 fill:#74b9ff,color:#333,stroke:#333,stroke-width:1px,rx:5px,ry:5px,stroke-dasharray: 3 3
style C1 fill:#55efc4,color:#333,stroke:#333,stroke-width:1px,rx:5px,ry:5px,stroke-dasharray: 3 3
style C2 fill:#55efc4,color:#333,stroke:#333,stroke-width:1px,rx:5px,ry:5px,stroke-dasharray: 3 3
style D1 fill:#ffeaa7,color:#333,stroke:#333,stroke-width:1px,rx:5px,ry:5px,stroke-dasharray: 3 3
style D2 fill:#ffeaa7,color:#333,stroke:#333,stroke-width:1px,rx:5px,ry:5px,stroke-dasharray: 3 3
linkStyle default stroke:#999,stroke-width:2px,fill:none;
%% Human-centric callouts
subgraph "๐ฅ Human Benefits"
direction LR
H1["๐จโ๐ผ For Executives:<br>ROI & Competitive Edge"]
H2["๐จโ๐ป For Developers:<br>Focus on Innovation"]
H3["๐ฉโ๐ผ For Managers:<br>Predictable Delivery"]
end
B -.-> H1
C -.-> H2
D -.-> H3
style H1 fill:#fab1a0,color:#333,stroke:#333,stroke-width:1px,rx:5px,ry:5px
style H2 fill:#fab1a0,color:#333,stroke:#333,stroke-width:1px,rx:5px,ry:5px
style H3 fill:#fab1a0,color:#333,stroke:#333,stroke-width:1px,rx:5px,ry:5px
For organizations trapped by legacy infrastructure, this represents a compelling opportunity to break free from technical debt and embrace digital transformation with confidence.
This technical specification details the architecture, components, and implementation requirements for the AI-Powered Code Modernization System. This system employs specialized AI agents to automate and enhance the process of modernizing legacy codebases.
This specification covers the end-to-end technical components required to build, deploy, and operate the AI-Powered Code Modernization System, including all AI agents, workflows, interfaces, and supporting infrastructure.
| Term | Definition |
|---|---|
| LLM | Large Language Model |
| RAG | Retrieval-Augmented Generation |
| AST | Abstract Syntax Tree |
| LSP | Language Server Protocol |
| IR | Intermediate Representation |
The system follows a microservices architecture with specialized AI agents implemented as independent services that communicate through a central orchestration layer.
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ User Interface Layer โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Orchestration & Workflow Layer โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ AI Agent Service Layer โ
โ โโโโโโโโโโโโโ โโโโโโโโโโโโโ โโโโโโโโโโโโโ โโโโโโโโโโโโโ โ
โ โ Assessmentโ โTransformatโ โ Validationโ โ Shared โ โ
โ โ Agents โ โion Agents โ โ Agents โ โ Services โ โ
โ โโโโโโโโโโโโโ โโโโโโโโโโโโโ โโโโโโโโโโโโโ โโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Data & Storage Layer โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
| Component | Recommended Technologies |
|---|---|
| Frontend | React, TypeScript, D3.js |
| Backend APIs | FastAPI, Node.js (Express) |
| Agent Orchestration | Temporal, Apache Airflow |
| AI/ML Framework | PyTorch, TensorFlow, Hugging Face Transformers |
| Code Analysis | LLVM, TreeSitter, Language-specific parsers |
| Database | PostgreSQL, MongoDB, Neo4j (for code relationships) |
| Knowledge Base | Elasticsearch, Pinecone (vector DB) |
| Monitoring | Prometheus, Grafana |
| Container Orchestration | Kubernetes |
Purpose: Analyze legacy codebase structure, complexity, and dependencies
Capabilities:
Technical Components:
Inputs:
Outputs:
Purpose: Extract and document business logic embedded in code
Capabilities:
Technical Components:
Inputs:
Outputs:
Purpose: Analyze and map data structures, relationships, and lineage
Capabilities:
Technical Components:
Inputs:
Outputs:
Purpose: Restructure and modularize legacy code
Capabilities:
Technical Components:
Inputs:
Outputs:
Purpose: Translate source code to target language
Capabilities:
Technical Components:
Inputs:
Outputs:
Purpose: Optimize and modernize translated code
Capabilities:
Technical Components:
Inputs:
Outputs:
Purpose: Generate synthetic test data and test cases
Capabilities:
Technical Components:
Inputs:
Outputs:
Purpose: Execute code in both source and target environments
Capabilities:
Technical Components:
Inputs:
Outputs:
Purpose: Identify and resolve issues in transformed code
Capabilities:
Technical Components:
Inputs:
Outputs:
โโโโโโโโโโโโโโโ โโโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโโโ โโโโโโโโโโโโโ
โ Source Code โโโโโ>โ Assessmentโโโโโ>โ Analysis โโโโโ>โTransformatiโโโโโ>โ Validationโ
โ Repository โ โ Phase โ โ Results โ โ on Phase โ โ Phase โ
โโโโโโโโโโโโโโโ โโโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโโโ โโโโโโโโโโโโโ
โ โ โ
โผ โผ โผ
โโโโโโโโโโโโ โโโโโโโโโโโโโโ โโโโโโโโโโโโ
โ Knowledgeโ โ Transformedโ โ Quality โ
โ Base โ โ Code โ โ Report โ
โโโโโโโโโโโโ โโโโโโโโโโโโโโ โโโโโโโโโโโโ
| Data Category | Storage Requirements | Retention Policy |
|---|---|---|
| Source Code | Version-controlled repository | Full history |
| Analysis Results | Document database | Project lifetime |
| Transformation History | Relational/Graph database | Project lifetime |
| Validation Results | Document database | Project lifetime + 1 year |
| Test Data | Object storage | Project lifetime or compliance period |
| Agent Models | Model registry | Current + 2 previous versions |
| Component | CPU | Memory | Storage |
|---|---|---|---|
| CodeLens Agent | 8 cores | 16 GB | 100 GB SSD |
| LogicMapper Agent | 8 cores | 32 GB | 200 GB SSD |
| DataFabric Agent | 4 cores | 16 GB | 500 GB SSD |
| CodeStructor Agent | 8 cores | 16 GB | 200 GB SSD |
| TransformEngine Agent | 16 cores | 64 GB | 300 GB SSD |
| EnhanceLogic Agent | 8 cores | 32 GB | 200 GB SSD |
| TestBed Agent | 8 cores | 16 GB | 1 TB SSD |
| DualRunner Agent | 16 cores | 32 GB | 500 GB SSD |
| FixPoint Agent | 8 cores | 16 GB | 200 GB SSD |
| Orchestration Layer | 8 cores | 16 GB | 100 GB SSD |
| Knowledge Base | 16 cores | 64 GB | 2 TB SSD |
Implement support in the following order:
| Source | Target | Status |
|---|---|---|
| COBOL | Java | Planned |
| Java (Legacy) | Java (Modern) | Supported |
| C# (.NET Framework) | C# (.NET Core) | Supported |
| AngularJS | Angular | Planned |
| Objective-C | Swift | Planned |
| PHP | Python/Django | Planned |
| VB.NET | C# | Planned |
| System | Integration Method | Purpose |
|---|---|---|
| GitHub | API | Source code access |
| GitLab | API | Source code access |
| Bitbucket | API | Source code access |
| Azure DevOps | API | Source code and pipeline integration |
| Jenkins | API | CI/CD integration |
| JIRA | API | Issue tracking integration |
| SonarQube | API | Code quality integration |
{
"agent": "TransformEngine",
"version": "1.0.0",
"configuration": {
"source_language": "java",
"target_language": "kotlin",
"preserve_comments": true,
"api_compatibility": "strict",
"max_concurrent_files": 10,
"style_guide": "kotlin_official",
"optimization_level": "moderate"
},
"resource_allocation": {
"cpu_request": "4",
"cpu_limit": "8",
"memory_request": "8Gi",
"memory_limit": "16Gi"
},
"integration": {
"input_queue": "transformation_tasks",
"output_queue": "transformed_code",
"status_topic": "agent_status"
}
}
This revolutionary approach to code modernization doesnโt just migrate systemsโit transforms them for the modern era while preserving the business value embedded in decades of development.